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' 

Abstract The concept of positons is introduced for the Toda laltice equation. It is shown 
that these multiparametric oscillating and slowly decaying solutions, when insetted as potentials 
in the finitedifference Schrodinger epuation of the comespoiding Lax pair, lead to a hivial 
S-mauix. The resulting eigenvalues are embedded in the continuous spectrum of this infinite 
Jacobi matrix. The singularities connected with the one-positon solution are discussed and 
compared with those of the positons of continuous integrable models. The special features of 
the soliton-positon interaction are analysed. 

1. Darboux transformations of the Toda lattice 

The Toda lattice equation reads 

(1) 
where n = 0, il, ik2, . . . . Introduction of velocities U,, := in and new dependent variables 
U, := exp(xa 

x -  - exp(xn-l - 1") - exp(x. - t+d 

allows (1) to be represented as the system 

un = Un-I - U, 

c = un(un - V"+l). 

This system has the Lax representation 

L = [ A ,  L]  (4) 

The discussion below focuses on the eigenvalue problem resulting from (5). It should be 
noted, however, that it is possible to reduce L to a Hermitian Jacobi matrix H via a gauge 
transformation using for this purpose a diagonal mahix G with G., = ex-/26,,. This leads 
to 

H = G-'LG (7) 
Hnm = ~ n S m n  + wn&+i ,m + w n - ~ S n - l , m  (8) 

with w. = exp(x,/2)/ exp(x,,+l/2). The transformation of the corresponding eigenvalue 
problems is discussed below (cf equation (32)). The matrix operator H constructed in (7), 
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(8) is similar IO the corresponding operator(s) introduced in [1,2], where the Toda lattice 
(1) has been studied via the inverse scattering method. 

The Lax equation (4) with the definitions (3, (6) represents a consistency condition for 
the coupled linear system 

A A Stahlhofen and V B Matveev 

&f. = V"f. + fn-I 

Afn = unfn + unfn+l + fn-1. 

(9) 
(10) 

The formalism of Darboux transformations (DTS) for the Toda lattice (1) to be used in the 
following has been introduced in [3], elucidated and applied to (1) in [4] and summarized 
in [5] .  The strategy is as follows:. let @"U), . . . , @ n ( N )  be fixed linear independent 
solutions of (9), (10) corresponding to different values hl, . . . , AN of A. Then the following 
theorem holds (cf [4]): the system ( S ) ,  (IO) is covariant with respect to the 'difference DT 

f n  + *"[NI' with 

the Casorati determinant Cas[.] is defined as ( j ,  k = 1, . . . , N )  

cas[gn(l), ..., g d W 1  :=&A Ajk=gntj-l(k) (12) 
and fn denotes the general solution of (9), (10) with eigenvalue A. Covariance means 
that +[NI solves a system with the same structure as ( S ) ,  (IO) with new coefficients 

a,+mi = U , ~ " N I  + + a - l [ ~ ~  (13) 
u.[Nl, ~n[Nl:  

All.,[Nl = Vn[NI@n[NI + U~[NI '~~+I[NI  + @n-l[NI. (14) 
The new coefficients u,[N], u.[N] and the new solution x,[N] are easily computed in terms 
of the old coefficients U,, U. and the functions &Cl), . . . , @"(N):  

Here we consider only the simplest case of trivial background setting 

x,=O u.=1 U" =o. (18) 

aIfn = fn-l (19) 
fn+l + fn-1 = Afn. (20) 

f,, = clonez'@ + ~ 2 l o - ~ e ' ~  (21) 

(22) 

In this case equations ( S ) ,  (10) simplify to 

The general solution of (19), (20) is 

this leads via 
2 w - A w + l = O  

to the eigenvalue 

A = w + lo-1. 
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2. The soliton solution of the Toda lattice 

A well known conshuction of the n-soliton solutions of (1) can be found, for example, 
in [61. We do not follow this derivation here, but derive the soliton solution of (1) and 
discuss its spectral properties in the framework of DTs in order to illustrate this formalism 
as sketched above. Starting for definiteness from a trivial background, the soliton of the 
Toda lattice (1) is obtained from setting N = 1 in (12)-(14) and constructing solutions of 
(19), (20) with IAl > 2. These are obtained by setting o = exp(kl) (or o = exp(-kl)) in 
(21)-which leads to the eigenvalue h = Hcoshkl-and read 

@rl(l) = exp(tcoshk1) cosh(kln t sinhkl + X I )  

:= exp(tcoshk1) cosh(&); XI, k l ~  E I!%. 
Thus the explicit form of the soliton solution follows from 

the sign ambiguity induced by (24) corresponds to the two possible directions of propagation. 
The soliton solution described by (25) tends asymptotically to constant values, i.e. 

xp1 = Fkl n -+ fco.  (26) 
The reflection-and uansmission-coefficients associated with the soliton (25) can be 
determined as usual by the Jost solutions j5 of (20) which are fixed by the asymptotic 
condition 

f ,  = gkn[1 +0(1)] n + +& (27) 
the accompanying definition 

f n  = a(k)e"" + b(k)e-"" n + -cc 
introduces the reflection coefficient b(k) and the transmission coefficient a@). 

function, 
These coefficients are obtained by comparing the asymptotic form @n+a of the $- 

with the definitions. Since these calculation are based on arbitrary butfied time, the time- 
dependent terms in exp(in) in (29) can be dropped for simplicity as has been done here. 
Equation (29) 1eads.according (24) to 

= eikn(eitjkl - 1 )  n + rtco. (30) 

f ?I- - (,ik-kr - l)-I@". (31) 

€I* = A* (32) 

Hence we can conclude that the Jost function in the soliton case is given by 

The solution of 

where H has been defined in (8), follows from Lf = Af via @ = G - l f ,   i.e. @" = 
exp(-x,/2) f..  The corresponding Jost solution has to be multiplied accordingly. In the 
soliton case discussed here, this factor tends to (cf (26)) exp(&kl/2) for n -+ &W. 
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A comparison of (30), (31) with (28) shows that the soliton (25) is for fixed time a 
reflectionless potential when inserted in (8); the corresponding transmission coefficient is 
given by 

exp(-kl - ik) - 1 
exp(-kl +ik) - 1' 

a&) = - exp(kl+ ik) (33) 

It can be seen from (33) that the transmission coefficient of L, aL(k), contains a non-unitary 
factor ekl; this factor vanishes when the derivation is based on the self-adjoint operator H 
from (8). An extension of this constnrction to n solitons is easily achieved following the 
strategy of the DT for the Toda lattice summarized in [5]. 

3. Difference operators and trivial monodromy 

Difference operators of the form (7), (S ) ,  obtained by Darboux dressing of the zero 
background, give rise to the following two new phenomena. 

(i) It is possible to consh'uct explicitly solvable non-singular purely periodic difference 
operators having an arbitraq period, i.e. U,+, = U,,, U"+, = U. for any integer m, and 
trivial monodromy. In the difference case m periodic potentials (or) correspond to a spectrum 
having m finite gaps and ( p )  are expressed in terms of the m-dimensional Riemann theta 
functions of hyperelliptic curves of genus m. Thus the examples discussed in the following 
correspond to a degenerate case of these finite gap potentials obtained by a limit in which 
the length of the gaps tends to zero. 

(ii) A one-step Darboux dressing of zero background with an oscillating starting solution 
leads to solvable almost periodic potentials which are, in principle, unbounded on the whole 
axis. The difference from case (i) is fixed by the choice of the spectral parameter kl in the 
generating solution (o, where (o = sin(k1n +XI) corresponds to the zero background. The 
associated Floquet-Bloch solutions read (cf the corresponding @-function for the soliton 
case considered in the previous section) 

I t  should be noted again that the discussion is always up to a factor exp(-xn/2) resulting 
from the transformation from L (equation (5)) to H (equations (7), (8)). If kl =xi- with r 
a rational number, then @I,* in (34) is obviously non-singular and periodic. If kl = n/m, 
for instance, the period ,of the coefficients of (8 )  will be exactly 2m. In this case it is clear 
that a generic choice of the phase XI, XI # 0, leads to globally bounded Floquet-Blcch 
solutions corresponding to the trivial dependence of the quasi-momentum on energy. If, by 
contrast, the relation kl = zq with q irrational holds, then it is always possible to choose 
n and m such that 

(35) 

This means that the potential and the @-function obtained in the construction are unbounded 
while having no singularities. In this case it is obvious that the resulting operators are not 
periodic but almost periodic. These results follow from the Dirichlet theorem about the 
approximation of irrational numbers by rational numbers? proven, for example, in [7]. 
In this context it is interesting to note thaf the explicit examples constructed below are 

lkln + X I  - zml < E .  

t One of the authors (VBM) is indepled to Rofessor M Kn6rrer for his arguments provided in the context of 
discussions about the spacetime discretized sinMordon equation. 
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apparently not discussed in the general theory of almost periodic operators as the recent 
review [8] indicates. 

In the continuous case, by comparison, one has the following situation: it has been 
shown in [9], that in one dimension no smooth Scbrodinger operator -azz + u(x )  having 
non-trivial potential I+) and no gaps in the spectrum exists. If the condition of non- 
singularity is dropped, however, the construction of the Hill operator with singular potential 
and no gaps is well established. The associated potential 

has second-order poles on the real axis. This potential can be considered to result from a 
degeneration of the periodic potential 

(37) 

with one gap which corresponds to the case when the pure imaginary period tends to infinity 
or to a closure of the gap. 

The singular potential (36) can be deduced even more easily by one DT of the 
Sehrodinger equation for trivial background via 

(38) 

u ( x )  = 2P(x) + c 

U ( X )  = -za,, log(rp(x. kl)) := -2a,, log(sin(kl(x +XI))).  

The associated Floquet-Bloch solutions are then given by 

= eSkx(fik - kl cot(kl(x + XO))). (39) 

Instead of the usual structure 
= e*in(4x (40) 

n 
xi.z(x, k), X I , Z ( ~  + T) = X I . Z ( ~ ) ,  T := - 

ki 
characteristic for the generic case with a nonlinear dependence of p on k we have for this 
special case a linear dependence of p on k. Thus the monodromy matrix in the basis of 
Floquet-Bloch solutions is given by 

exp(+ikir/kl .=( 0 
0 

4. Positons of the Toda lattice 

The positon solutions (briefly: positons) of the Toda lattice (1) are generated using bounded 
solutions of (20) corresponding to the continuous spectrum of the free operators Lo (or Ho), 
i.e. to -2 < A < 2. Restricting ourselves to this case we set w = exp(ik), h = 2cos(k) in 
(23). (Note in analogy to the soliton case, equation (24), the choice w = exp(-ik) is also 
possible.) The solutions of (19), (20) thus read for a trivial background 

& ( j )  = exp(t cos kj) sin(kjn t sin kj + pj(kj)) 
= exp(t cos kj) sin(T:)) 

with real kj, pj. To be specific, the positons result from (i) a two-step DT (i.e. N = 2 in (15)- 
(17)) with two functions &( j ) ,  ( j  = 1,2) of type (42) and (ii) subsequently computing the 
limit kz --f kj in the result of this DT. This ansatz leads to oscillating long-ranged solutions 
where the conventional scheme of inverse scattering based on exponential decay (cf [1,2]) 
is not applicable. 
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Following the sisategy outlined above we first write (17) as 

With (42) one obtains from (43) 

7, = exp[t(cos kl + coskz)](sin(T,(')) sin(TF) + k2) - sin(Ti*)) sin(T," +kl)). (44) 
We now assume that &(2) and pZ(k2) are analytical functions of the spectral parameter. 
The limit kz + kl gives for the corresponding Taylor expansion of q5&) the expression 

which leads upon insertion of (42) to 

&(2) = exp(t cos kl)sin(T,")) + [-t sin(k1) sin(T,')) + g. cos(T,?)] 
x exp(t coskl) A k +. . .~ 

(45) 

(46) 
where higher-order terms have been omitted and the abbreviations 

Ak = kz - ki, g. = &, T:') = n t coskl + J7, (47) 
with 

When inserting the expansion (46) in the ansatz (43), one can verify in a straightforward 
calculation that the n-independent factors exp(t cos kl) and Ak cancel in the ratio. This 
allows us to define the one-positon solution of the Toda lattice (1) as 

= a,, pl  have been introduced. 

2 

= 4 log (-) 
the positon r-function TY reads explicitly as 

n (g. -k f) sin kl + sin(2T" + kl) (49) p s  = - 
with the simplified notation 

@"(I) =sin(T,) T, = k l n ~ t s i n k ~ + p l ( k l )  g , = a k , T , = n ~ t c o s k i + a . ( 5 0 )  

While (49) is completely sufficient to analyse the positon (48), it should be stressed here 
that the form of the r-function rf" is not unique since the positon (48) can be defined only 
up to constant terms. It is also possible to take the r-function resulting from the soliton- 
positon solution of (1) in the limit of the vanishing spectral parameter of the soliton as the 
r-function of the positon. The explicit form of this altemative definition is derived below. 

Any singularities of the positon (48) are determined by the zeros of r y  in (49). A 
short inspection shows, that for any fixed f ,  the right-hand side of (49) can only vanish for 
a few values of n. This can be verified by choosing simple values for kl and all phases 
and to analysing the resulting expressions. (The choice kl = $?, for instance, makes g. in 
(49) time-independent and is easy to analyse.) The general observation is that it is always 
possible to choose the phases pi  and J ~ I  such that (49) will be singular only at some values 
of t for every lattice site n. 
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At this ,point it is worthwhile to summarize the singularity smcture of positons in 
the cases studied so far: the positon of the KdV equation is singular (cf [lo, 111). It has 
a second-order pole propagating from the right to the left. The velocity of the pole (i) 
oscillates periodically around a constant average value fixed by the spectral parameter k of 
the positon and (ii) becomes infinite at certain periodically occurring points of the ( x .  t )  
plane (cf [13]). The positon of the modified KdV equation [12] has two first-order poles with 
a mutual distance that oscillates periodically; the moments of infinite velocity occur in this 
case also. The sinh4ordon positon [ 141 is also singular except at a discrete sequence of 
equidistantly spaced values of time. The non-local KdV equation provides a first exception: 
the complex valued positon remains non-singular almost all the time [15]. The space and 
time discretized sinh-Gordon equation [16] has positon solutions which are non-singular 
for certain values of energy. Thus the positon (48) of the Toda lattice (1)  could be coined 
'weakly singular' when compared with the positons of continuous integrable systems. 

The @-function of the Lax pair (9). (10) associated with the positon (48) is obtained by 
computing the same limit in the spectral parameter in the ansatz (1 1). Omitting again for 
simplicity the arbitrary but fixed time dependence, the expression 

Cas[sin T,, g, cos T,, eiK"] 
Cas[sin(T. + k l ) ,  (gn + 1) cos(T, + kdl  

has to be evaluated. The leading term of asymptotics of *,, for n + %CO reads 

(51) *n = 

@n = (ezk -2eiKcoskl+ ])ei"[] +0(1/n)l.  (52) 

An inspection of (51), (52) shows that for k = i k l  the @--function en issquare summable, 
i.e. the series oscillates for all other real values of k.  Thus 
A = 2cos kr is a discrete eigenvalue of the operator L (or H) embedded in the continuous 
spec!". This conclusion is supported by the asymptotics of the positon (48) reading 

I @: I is convergent; 

the oscillating and slowly decaying term appearing on the right-hand side of (53) is 
characteristic for a von Neumann-Wigner potential supporting embedded eigenvalues. The 
asymptotic definition (27) of the Jost function fa and the asymptotic form (52) of the 
$-function @" show that the Jost solution associated with the positon is given by 

f n -  - (eZik - 2e"coskI + l)-'@". (54) 

The Jost solution of the corresponding equation X@ =~ A$ results from (53) via 
multiplication by the factor exp(-x,/Z), which tends to a constant for n + +eo in (48). 
When (52), (53) are compared with the definition (28) of the reflection and transmission 
coefficients, one sees immediately that the positon (48) leads to the identities a(k) = 1, 
b(k) = 0. In other words: the scattering matrix associated with the operator L (or H )  
is the unit matrix for the potential defined for fixed t by the positon solution (48) of the 
Toda lattice (1). This is a special feature common to all potentials resulting from positon 
solutions of nonlinear integrable systems which we suggest calling 'supertransparent' (cf 
[ 10]-[14]). Since, however, the supertransparency phenomenon is, in the present lattice case, 
related to genuine eigenvalues in the continuum instead of singular positive eigenvalues in 
the continuum .(coined 'speics' in [IO]), the supertransparency looks very interesting with 
respect to possible applications. 
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We now discuss the solution of (1) describing the soliton-positon interaction. It reads 
in compact form: 

with 

r i p  = Cas[sin(T.), g, cos(T,), cosh(YJ1 
T, = kln 'F tsinkl t PI 
Y, = yn F t  sinh y + pz  

(56) 
(57) 
(58) 

Note, that the time-independent factors cancelling in the calculation of x, have again been 
dropped. In order to determine the results of the interaction we have subsequently to keep 
Y,, and g, fixed while computing the limit t -+ fa; the results give the asymptotic forms 
of the soliton (Y, fixed) and the positon (9. fixed). 

In the soliton case, the leading term of asymptotics of the r-function r? from (56) has 
the form of the soliton-generating function (24). This means that the soliton is not changed 
by the collision. The positon, howewr, acquires two 'phase shifts' and a multiplicative 
factor which are functions of the spectral parameters of the soliton and positon. In the area 
where the positon is concentrated, the r-function rip becomes 

(59) 

gn = n Ftcoskl  t CI 
kl, y ,  n. pi, PI E R. 

r i p  = +e'" AI {sinkl[-(g, + $)+A,]  + 4 sin(2T" + kl + A d ]  
the multiplicative factor A] and the phases A,, A2 are given by 

A, = (1 - 2ey coskl + ezy) 
e' cos kl - 1 

1 - 2ey cos kl + ezy 
A2 = 

sin2kl - 2ey sin kl 
cos 2kl - 2ey cos kl + e2Y ' 

A3 = arctau 

These phase shifts provide the possibility of an alternative definition of the r-function of 
the positon (48) as mentioned above. Computing the result of taking the limit y -+ 0 in 
(60)-(62) one obtains the r-function 

rnp" = (2 - Zcoskl)[sinkl[-(g, + 4) - $ 1  + $ sin(2T. + Zkl)}. (63) 
The essential difference between (63) and (49) is the factor (2-2cos kl) which is obviously 
a consequence of the non-uniqueness of the solutions of the Toda lattice (1) as mentioned 
above. The additional terms appearing on the right-hand side of (63) can be eliminated by 
absorbing them into a new definition of the phases in T,, g,. 

When comparing the results derived here with previous studies of positons for 
continuous integrable systems (cf [10]-[14]), it should be noted that the main technical 
difference between the continuous and semi-discrete case considered here is the fact that 
the Wronski determinant has been replaced by the Casorati determinant. Starting from 
this observation it is more or less straightforward to extend the present constructions to n- 
soliton-in-positon solutions and to higher-order positons derived in [lo]-[14] for continuous 
evolution equations to the present case. 

To conclude the technical remarks to the results presented here we note that existing 
studies of the finite difference Schrodinger equation as given, for example, in 1171 could 
not be applied to the present case since they are based on potentials decaying faster than 
1 In. The general framework of (direct) scattering theory incorporating as a special case 
the slow decay of initial data as considered here can easily be worked out by extending the 
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arguments used in [18]. The ansatz employed here, however, is completely independent of 
such a general theory since it is based on a purely algebraic approach. 

The new concept of positons introduced above arose from several sources which should 
be mentioned here. We first recall that such a study contributes to fascinating attempts 
to extend possible applications of the inverse scattering method to the case of initial data 
slowly decaying at infinity. The second reason is the unusual spectral picture connected with 
positons: for fixed time they represent von Neumann-Wiper potentials generating positive 
eigenvalues embedded in the continuous spectrum (cf [10]-[14] and the references cited 
therein). One more intriguing reason of interest concerns applications of the subvariety of 
even multi-positon potentials to quantum many-body problems. Taken as a pair interacion 
between one-dimensional partides of equal masses, they lead to the absence of FresneI 
waves in the large distance asymptotics of the n-particle wavefunction, thus extending the 
results obtained by Buslaev and Merkuriev for short-range reflectionless pair interactions 
1191. 
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